p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.25D4, (C2×C8)⋊6C4, C4○(C4.Q8), C4○(C2.D8), C4.3(C2×Q8), C8.17(C2×C4), C4.Q8⋊13C2, C2.D8⋊13C2, C4.22(C4⋊C4), (C2×C4).20Q8, C2.2(C4○D8), (C2×C4).147D4, C4⋊C4.48C22, C22.9(C4⋊C4), (C2×C8).74C22, (C2×C4).69C23, (C22×C8).11C2, C4.26(C22×C4), C22.49(C2×D4), C42⋊C2.6C2, (C22×C4).115C22, C2.13(C2×C4⋊C4), (C2×C4)○(C2.D8), (C2×C4)○(C4.Q8), (C2×C4).74(C2×C4), SmallGroup(64,108)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.25D4
G = < a,b,c,d,e | a2=b2=c2=1, d4=c, e2=cb=bc, ab=ba, eae-1=ac=ca, ad=da, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >
Subgroups: 81 in 57 conjugacy classes, 41 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C4.Q8, C2.D8, C42⋊C2, C22×C8, C23.25D4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×C4⋊C4, C4○D8, C23.25D4
Character table of C23.25D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -i | i | -i | -i | i | -i | i | i | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 4 |
ρ10 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -i | i | i | i | -i | -i | i | -i | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 4 |
ρ11 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | i | i | -i | i | i | -i | -i | -i | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 4 |
ρ12 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | i | i | i | -i | -i | -i | -i | i | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 4 |
ρ13 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -i | -i | i | -i | -i | i | i | i | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 4 |
ρ14 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -i | -i | -i | i | i | i | i | -i | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 4 |
ρ15 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | i | -i | i | i | -i | i | -i | -i | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 4 |
ρ16 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | i | -i | -i | -i | i | i | -i | i | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ20 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √-2 | -√2 | -√-2 | √2 | √-2 | -√-2 | complex lifted from C4○D8 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | √-2 | -√2 | √-2 | -√2 | -√-2 | -√-2 | complex lifted from C4○D8 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √-2 | √2 | √-2 | √2 | -√-2 | -√-2 | complex lifted from C4○D8 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √-2 | √2 | -√-2 | -√2 | √-2 | -√-2 | complex lifted from C4○D8 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√-2 | √2 | √-2 | -√2 | -√-2 | √-2 | complex lifted from C4○D8 |
ρ26 | 2 | -2 | 2 | -2 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√-2 | √2 | -√-2 | √2 | √-2 | √-2 | complex lifted from C4○D8 |
ρ27 | 2 | -2 | 2 | -2 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√-2 | -√2 | -√-2 | -√2 | √-2 | √-2 | complex lifted from C4○D8 |
ρ28 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√-2 | -√2 | √-2 | √2 | -√-2 | √-2 | complex lifted from C4○D8 |
(9 13)(10 14)(11 15)(12 16)(25 29)(26 30)(27 31)(28 32)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 30)(10 31)(11 32)(12 25)(13 26)(14 27)(15 28)(16 29)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 14 23 31)(2 9 24 26)(3 12 17 29)(4 15 18 32)(5 10 19 27)(6 13 20 30)(7 16 21 25)(8 11 22 28)
G:=sub<Sym(32)| (9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,23,31)(2,9,24,26)(3,12,17,29)(4,15,18,32)(5,10,19,27)(6,13,20,30)(7,16,21,25)(8,11,22,28)>;
G:=Group( (9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,23,31)(2,9,24,26)(3,12,17,29)(4,15,18,32)(5,10,19,27)(6,13,20,30)(7,16,21,25)(8,11,22,28) );
G=PermutationGroup([[(9,13),(10,14),(11,15),(12,16),(25,29),(26,30),(27,31),(28,32)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,30),(10,31),(11,32),(12,25),(13,26),(14,27),(15,28),(16,29)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,14,23,31),(2,9,24,26),(3,12,17,29),(4,15,18,32),(5,10,19,27),(6,13,20,30),(7,16,21,25),(8,11,22,28)]])
C23.25D4 is a maximal subgroup of
(C2×D4).24Q8 C8○D4⋊C4 M4(2).3Q8 M4(2).30D4 C24.100D4 C4○D4.7Q8 C4○D4.8Q8 C4×C4○D8 C42.383D4 C24.144D4 C24.110D4 (C2×C8)⋊11D4 (C2×C8)⋊12D4 C8.D4⋊C2 C42.447D4 C24.115D4 (C2×D4).301D4 (C2×D4).302D4 C42.364D4 C42.252D4
C23.D4p: C23.9D8 C8.C42 C23.24D8 C23.40D8 C23.41D8 C23.13D8 C23.25D8 M5(2)⋊1C4 ...
C4p.(C4⋊C4): C8.9C42 C8.4C42 C8.14C42 C8.5C42 C8.(C4⋊C4) C42.62Q8 C42.28Q8 M5(2)⋊3C4 ...
C4⋊C4.D2p: C42.277C23 C42.278C23 C42.279C23 C42.20C23 C42.21C23 M4(2)⋊3Q8 M4(2)⋊4Q8 C42.485C23 ...
C23.25D4 is a maximal quotient of
C42.42Q8 C42.43Q8 C42.Q8 C24.132D4 C4×C4.Q8 C4×C2.D8 C24.133D4 C42.56Q8
C23.D4p: C23.22D8 C23.27D12 C23.22D20 C23.22D28 ...
C4p.(C4⋊C4): C42.60Q8 C4⋊C4.234D6 C20.76(C4⋊C4) (C2×C8)⋊6F5 C28.45(C4⋊C4) ...
C4⋊C4.D2p: C24.71D4 C42.31Q8 (S3×C8)⋊C4 C8.27(C4×S3) (C8×D5)⋊C4 C8.27(C4×D5) (C8×D7)⋊C4 C8.27(C4×D7) ...
Matrix representation of C23.25D4 ►in GL3(𝔽17) generated by
16 | 0 | 0 |
0 | 1 | 0 |
0 | 4 | 16 |
16 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 16 |
1 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 16 |
16 | 0 | 0 |
0 | 2 | 0 |
0 | 5 | 8 |
4 | 0 | 0 |
0 | 15 | 1 |
0 | 14 | 2 |
G:=sub<GL(3,GF(17))| [16,0,0,0,1,4,0,0,16],[16,0,0,0,16,0,0,0,16],[1,0,0,0,16,0,0,0,16],[16,0,0,0,2,5,0,0,8],[4,0,0,0,15,14,0,1,2] >;
C23.25D4 in GAP, Magma, Sage, TeX
C_2^3._{25}D_4
% in TeX
G:=Group("C2^3.25D4");
// GroupNames label
G:=SmallGroup(64,108);
// by ID
G=gap.SmallGroup(64,108);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,55,158,963,117]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^4=c,e^2=c*b=b*c,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations
Export